UNIVERSITY OF MYSORE

Postgraduate Entrance Examination November - 2021

	QUESTION PAPER BOOKLET NO.
Entrance Reg. No.	200
	SUBJECT CODE : 28

QUESTION BOOKLET

(Read carefully the instructions given in the Question Booklet)

COURSE : M.Sc. SUBJECT : Statistics

MAXIMUM MARKS: 50 MAXIMUM TIME: 75 MINUTES

(Including time for filling O.M.R. Answer sheet)

INSTRUCTIONS TO THE CANDIDATES

- 1. The sealed question paper booklet containing 50 questions enclosed with O.M.R. Answer Sheet is given to you.
- 2. Verify whether the given question booklet is of the same subject which you have opted for examination.
- Open the question paper seal carefully and take out the enclosed O.M.R. Answer Sheet outside the question booklet and fill up the general information in the O.M.R. Answer sheet. If you fail to fill up the details in the form as instructed, you will be personally responsible for consequences arising during evaluating your Answer Sheet.
- 4. During the examination:
 - a) Read each question carefully.
 - b) Determine the Most appropriate/correct answer from the four available choices given under each question.
 - c) Completely darken the relevant circle against the Question in the O.M.R. Answer Sheet. For example, in the question paper if "C" is correct answer for Question No.8, then darken against Sl. No.8 of O.M.R. Answer Sheet using Blue/Black Ball Point Pen as follows:

Question No. 8. (A) (B) (Only example) (Use Ball Pen only)

- 5. Rough work should be done only on the blank space provided in the Question Booklet. Rough work should not be done on the O.M.R. Answer Sheet.
- 6. <u>If more than one circle is darkened for a given question, such answer is treated as wrong and no mark will be given. See the example in the O.M.R. Sheet.</u>
- 7. The candidate and the Room Supervisor should sign in the O.M.R. Sheet at the specified place.
- 8. Candidate should return the original O.M.R. Answer Sheet and the university copy to the Room Supervisor after the examination.
- 9. Candidate can carry the question booklet and the candidate copy of the O.M.R. Sheet.
- 10. The calculator, pager and mobile phone are not allowed inside the examination hall.
- 11. If a candidate is found committing malpractice, such a candidate shall not be considered for admission to the course and action against such candidate will be taken as per rules.
- 12. Candidates have to get qualified in the respective entrance examination by securing a minimum of 8 marks in case of SC/ST/Cat-I Candidates, 9 marks in case of OBC Candidates and 10 marks in case of other Candidates out of 50 marks.

INSTRUCTIONS TO FILL UP THE O.M.R. SHEET

- 1. There is only one most appropriate/correct answer for each question.
- 2. For each question, only one circle must be darkened with BLUE or BLACK ball point pen only. Do not try to alter it.
- 3. Circle should be darkened completely so that the alphabet inside it is not visible.
- 4. Do not make any unnecessary marks on O.M.R. Sheet.
- 5. Mention the number of questions answered in the appropriate space provided in the O.M.R. sheet otherwise O.M.R. sheet will not be subjected for evaluation.

ಗಮನಿಸಿ : ಸೂಚನೆಗಳ ಕನ್ನಡ ಆವೃತ್ತಿಯು ಈ ಮಸ್ತಕದ ಹಿಂಭಾಗದಲ್ಲಿ ಮುದ್ರಿಸಲ್ಪಟ್ಟಿದೆ.

1. If f(x) = 2x + 1, $0 \le x \le 1$, B = [1, 3] and D = (1/3, 2/3] then f(D) is

(A) (5/100, 3/7)

(B) (5/3, 7/3]

(C) [3/5, 5/7]

(D) None

2. The limit of $\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}$ is

(A) $\exp\{\log 5\}$

(B) log 2

(C) n

(D) None

3. Which of the following is need not be true in a vector space?

- (A) It is closed under vector addition.
- (B) It is closed under scalar multiplication.
- (C) It is closed under vector multiplication.
- (D) It is closed under linear combinations of vectors.

4. What is the rank of the matrix Y? where $Y = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \\ 3 & 4 & 7 \\ 4 & 5 & 9 \end{bmatrix}$.

(A) 1

(B) 2

(C) 3

(D) 4

5. Rolle's Theorem holds for the function $f(x) = x^2 - 6x + 8$ in the interval

(A) [1,3]

(B) [2,4]

(C) [3,5]

(D) [2,6]

M-5	5403		[3]	(P.T.O.)
	(C)	2	(D)	$\sqrt{2}$
	(A)	0	(B)	1
11.		and Y are independent standard ance of $X - Y$?	normal ra	ndom variables, then what is the
	(C)	One	(D)	Zero
	(A)	The least	(B)	The largest
10.		of absolute deviation about me		
10	C		1	
	(C)	Central 50%	(D)	Last 75%
	(A)	First 50%	(B)	Last 50%
9.	The	quartile deviation includes the:		
	(C)	Harmonic Mean	(D)	Arithmetic Mean
	(A)	Weighted Mean	(B)	Geometric Mean
8.	Whe	en calculating the average growt	h of econ	omy, the correct mean to use is?
	(D)	$A^{T} + B^{T}$, where A^{T} denotes transfer	nspose of	`A.
	(C)	AB		
	(B)	A - B		
	(A)	A + B		
7.		and B are any two symmetric nowing need not be a symmetric n		of the same order, which of the
	(C)	$\frac{x+y}{2}$	(D)	<i>x</i> + <i>y</i>
	(A)		(B)	2x
	(A)	1	(D)	1

If x and y are real numbers then max(x,y)+min(x,y) equals to

12.	In a frequency curve of scores, the mode was found to be higher than the mean. This shows that the distribution is :			
	(A)	Negatively skewed	(B)	Positively skewed
	(C)	Poisson	(D)	Normal
13.	The standard deviation of marks of 100 students is 12. Every student is later awarded 5 marks. The standard deviation of new set of marks is			
	(A)	$12+\sqrt{5}$	(B)	17
	(C)	12	(D)	$\sqrt{17}$
14.	Whi	ch of the following helps in identifying	ng co	rrelation between two variables?
	(A)	Box-plot	(B)	Scatter plot
	(C)	Stem and leaf plot	(D)	Textile plot
15.	For	a specific sample size, the width of	a 95%	% confidence interval on μ
	(A)	would be larger than the width of a	90%	confidence interval on μ
	(B) would be smaller than the width of a 90% confidence interval on μ			
	(C) would be the same as the width of a 90% confidence interval on μ			
	(D)	cannot be compared to the width o	f a 90	0% confidence interval on μ
16.		ne following sequence of two symbol qual to : xyyyxxxyxyyy	s x an	d y,the number of runs exhibited
	(A)	7	(B)	8
	(C)	5	(D)	6
17.	If X	has $F(1,2)$ distribution, what is the α	distril	oution of $\frac{1}{X}$?
	(A)	F(1,2)	(B)	F(2,1)
	(C)	Normal (1,2)	(D)	Beta(2,1)

[4]

18.	Which of the following is not true for a simple linear regression model?					
	(A)	(A) The response and regressor variables have to be measured in the same unit of measurement				
	(B)	The response and regressor variable unit of measurement	es ne	ed not be measured in the same		
	(C)	The error variance is assumed to b	e con	stant		
	(D)	The model is a linear model				
19.	For which one of the following distributions, is it true that the sum of a finite number of independent and identically distributed random variables having that distribution has the same distribution as any one of them?					
	(A)	Normal	(B)	Uniform		
	(C)	Exponential	(D)	Binomial		
20.	Dou	ble sampling is also called				
20.		Three stage sampling	(B)	Stratified sampling		
	` ′	Two Phase Sampling	\ /	Systematic Sampling		
21.	The coefficient of correlation is independent of:					
	(A)	Change of scale only	(B)	Change of origin only		
	(C)	Both Change of scale and origin	(D)	Change at constant		
22.	The	coefficient of correlation:				
	(A)	has no limits	(B)	Can be less than one		
	(C)	Can be more than one	(D)	varies between \pm one		
23.	The	further the two regression lines cut of	each o	other :		
	(A)	Greater will be the degree of correla				
	(B)	The lesser will be the degree of cor		on		
	(C)	Does not matter				
	(D)	Equal will be the degree of correlati	ion			

24.	The number of questions in a questionnaire should be:				
	(A)	A) As small as possible, keeping in view the purpose of inquiry			
	(B)	As large as possible			
	(C)	Between 40 and 80			
	(D)	Infinite questions			
25.		eacher calculated the mean marks of eased the marks of one student by 10			
	(A)	84	(B)	84.5	
	(C)	85	(D)	83.5.	
26.		a symmetric distribution the lower ectively. Then what is the Median?	and ı	apper quartiles are 136 and 158	
	(A)	147	(B)	140	
	(C)	150	(D)	146	
27.	If X of X	has normal distribution with mean 1 and 1.	and v	ariance 2, what is the distribution	
	(A)	Normal with mean 0 and variance 3			
	(B)	Normal with mean 0 and variance 2			
	(C)	Normal with mean 1 and variance 2			
	(D)	Normal with mean 1 and variance 3			
28.	Whi	ch of the following is a relative mea	sure (of dispersion?	
		Variance	(B)	-	
	` /	Standard Deviation	(D)	Range	
	(-)	~ · · · · · · · · · · · · · · · · · · ·	(-)		
29.	A ne	egative coefficient of skewness impli	es tha	at:	
	(A)	Mean is less than Mode	(B)	Mean is greater than Mode	
	(C)	Mean is equal to Mode	(D)	Median is equal to Mode	

[6]

30.	Whi	Which of the following is true for the unbiased estimator t of the parameter θ .				
	(A)	A) Bias of the estimator is positive				
	(B)	Bias of the estimator is negative				
	(C)	Mean square error (t) = Variance (t))			
	(D)	Large MSE				
31.	The	calculated value of Chi-square is:				
	(A)	Always negative	(B)	Neither positive nor negative		
	(C)	Always positive	(D)	Either positive or negative		
32.	In te	esting of a null hypothesis that an acc	cused	is innocent, the type-I error is?		
	(A)	Decide to punish him when he is in	nocei	nt		
	(B)	Decide to acquit him when he is gui	ilty			
	(C)	Decide to punish him when he is gu	ilty			
	(D)	Decide to acquit him when he is inn	nocen	t		
33.		probability of a defective bolt is 0.2. ctive bolts in a total of 1,000 is:	Ther	n the mean for the distribution of		
	(A)	1000	(B)	360		
	(C)	200	(D)	126		
34.	For	the given numbers: 2,6,1,5,3,7,2, wh	nat is	the moving average of order 3?		
	(A)	3,4,3,5,4	(B)	3,4,5,3,4		
	(C)	3,4,3,4,5	(D)	3,5,3,4,4		
35.	In how many ways can 3 girls and 5 boys be arranged in a row so that all the 3 girls are together?					
	(A)	4320 ways	(B)	500 ways		
	(C)	234 ways	(D)	1050 ways		

36.	The most important factors causing seasonal variations are:			
	(A)	Growth of population	(B)	Depression in business
	(C)	Weather and social customs	(D)	Stock exchange
37.	In tinthey	me series analysis both trends and se	ason	al variations are studied because
	(A)	Describe past patterns		
	(B)	Allow the elimination of the compo	nent	from the series
	(C)	Allow projections to the future		
	(D)	Foretell the future		
38.		nmodities which show considerab sured by a :	le pr	ice fluctuations could be best
	(A)	Price Index	(B)	Value Index
	(C)	Paasche's Index	(D)	Quantity Index
39.	The	aggregate price index that uses base	year	quantities as base is:
	(A)	Paasche's Index	(B)	Fishers's Index
	(C)	Laspeyre's Index	(D)	Quantity Index
40.	Whi	ch of the following is useful in study	ing p	overty levels?
	(A)	Gini Index	(B)	Fish-bone diagram
	(C)	Simplex method	(D)	Lagrange's multipliers

[8]

Yate	Yates' algorithm is used to compute one of the following. Which one?		
(A) Factorial effect totals			
(B)	Variance of factorial effects		
(C)	Mean of factorial effects		
(D)	Standard errors of factorial effects		
Whi	ch of the following is not a basis for	desi	gn of experiments?
(A)	Randomization	(B)	Minimization
(C)	Local control	(D)	Replication
(A)	Normal	(B)	Chi-square
(C)	F	(D)	T
If {2	$(X_n, n \ge 1)$ is a sequence of independent	nt sta	ndard normal random variables,
what is the distribution of $X_1^2 + + X_{10}^2$?			
(A)	Chi-square distribution with 10 deg	grees	of freedom
(B)	Standard normal distribution		
(C)	Chi-square distribution with 100 de	egree	s of freedom
(D)	Normal distribution with mean 10 a	nd va	ariance 100
A Sampling frame is			
(1)		1	
(A)	a summary of the various stages in	volve	d in designing a survey
(A) (B)	an outline view of all the main units		
	•	sinas	sample
	(A) (B) (C) (D) Whit (A) (C) Whit static (A) (C) If {2} what (A) (B) (C) (D) A Sa	 (A) Factorial effect totals (B) Variance of factorial effects (C) Mean of factorial effects (D) Standard errors of factorial effects (E) Which of the following is not a basis for the following is not a basis for the following is the sampling of statistic for mean of a normal distribution to the following is the sampling of statistic for mean of a normal distribution to the following is the sampling of statistic for mean of a normal distribution to factorial effects (E) F (E) F (E) If {X_n, n≥1} is a sequence of independent what is the distribution of X₁²++X₁₀²? (A) Chi-square distribution with 10 degree (B) Standard normal distribution (C) Chi-square distribution with mean 10 at A Sampling frame is 	 (A) Factorial effect totals (B) Variance of factorial effects (C) Mean of factorial effects (D) Standard errors of factorial effects (E) Which of the following is not a basis for designation (A) Randomization (B) (C) Local control (D) (D) Which of the following is the sampling distribution where the following is the sampling distribution with 10 degrees (B) Standard normal distribution with 10 degrees (B) Standard normal distribution with 100 degrees (D) Normal distribution with mean 10 and variables (D) Normal

46.	Whi	ch of the following is an example of	f a tw	o-way ANOVA model?
	(A)	RBD	(B)	CRD
	(C)	LSD	(D)	Yate's model
47.	Infa	nt mortality rate (IMR) is defined as	:	
	(A)	number of deaths of children less births	than	one year of age per 1000 live
	(B)	number of deaths of children less births	than	five years of age per 1000 live
	(C)	neither (A) nor (B)		
	(D)	number of deaths of children less births	than	three years of age per 1000 live
48.	Whi	ch of the following is measure of de	eath r	ates of babies?
	(A)	Mortality rate	(B)	Infant Mortality Rate
	(C)	Age specific death rate	(D)	standardized death rates
49.		factorial experiment with two fact t is the total number of treatment con		
	(A)	9	(B)	8
	(C)	6	(D)	5
50.	Whi	ch of the following statement is false	e?	
	(A)	A Lorenz curve always starts at (0,	,1) an	d ends at (1,0)
	(B)	The Lorenz curve is not defined if the is zero or infinite	ne me	ean of the probability distribution
	(C)	The Lorenz curve cannot rise above	e the	line of perfect equality
	(D)	The information in a Lorenz currecoefficient	ve m	ay be summarized by the Gini
		\bigcirc)	

[10]

Rough Work

M-5403 [11]

ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಸೂಚನೆಗಳು

- 1. ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಜೊತೆಗೆ 50 ಪ್ರಶ್ನೆಗಳನ್ನು ಹೊಂದಿರುವ ಮೊಹರು ಮಾಡಿದ ಪ್ರಶ್ನೆ ಮಸ್ತಕವನ್ನು ನಿಮಗೆ ನೀಡಲಾಗಿದೆ.
- 2. ಕೊಟ್ಟರುವ ಪ್ರಶ್ನೆ ಮಸ್ತಕವು, ನೀವು ಪರೀಕ್ಷೆಗೆ ಆಯ್ಕೆ ಮಾಡಿಕೊಂಡಿರುವ ವಿಷಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ್ದೇ ಎಂಬುದನ್ನು ಪರಿಶೀಲಿಸಿರಿ.
- 3. ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯ ಮೊಹರನ್ನು ಜಾಗ್ರತೆಯಿಂದ ತೆರೆಯಿರಿ ಮತ್ತು ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯಿಂದ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯನ್ನು ಹೊರಗೆ ತೆಗೆದು, ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಸಾಮಾನ್ಯ ಮಾಹಿತಿಯನ್ನು ತುಂಬಿರಿ. ಕೊಟ್ಟಿರುವ ಸೂಚನೆಯಂತೆ ನೀವು ನಮೂನೆಯಲ್ಲಿನ ವಿವರಗಳನ್ನು ತುಂಬಲು ವಿಫಲರಾದರೆ, ನಿಮ್ಮ ಉತ್ತರ ಹಾಳೆಯ ಮೌಲ್ಯಮಾಪನ ಸಮಯದಲ್ಲಿ ಉಂಟಾಗುವ ಪರಿಣಾಮಗಳಿಗೆ ವೈಯಕ್ತಿಕವಾಗಿ ನೀವೇ ಜವಾಬ್ದಾರರಾಗಿರುತ್ತೀರಿ.
- 4. ಪರೀಕ್ಷೆಯ ಸಮಯದಲ್ಲಿ:
 - a) ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಯನ್ನು ಜಾಗ್ರತೆಯಿಂದ ಓದಿರಿ.
 - b) ಪ್ರತಿ ಪ್ರಶ್ನೆಯ ಕೆಳಗೆ ನೀಡಿರುವ ನಾಲ್ಕು ಲಭ್ಯ ಆಯ್ಕೆಗಳಲ್ಲಿ ಅತ್ಯಂತ ಸರಿಯಾದ/ ಸೂಕ್ತವಾದ ಉತ್ತರವನ್ನು ನಿರ್ಧರಿಸಿ.
 - c) ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೆಯ ವೃತ್ತಾಕಾರವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬಿರಿ. ಉದಾಹರಣೆಗೆ, ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8ಕ್ಕೆ "C" ಸರಿಯಾದ ಉತ್ತರವಾಗಿದ್ದರೆ, ನೀಲಿ/ಕಪ್ಪು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಬಳಸಿ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಕ್ರಮ ಸಂಖ್ಯೆ 8ರ ಮುಂದೆ ಈ ಕೆಳಗಿನಂತೆ ತುಂಬಿರಿ:
 - ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8. 🔘 📵 🔘 (ಉದಾಹರಣೆ ಮಾತ್ರ) (ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಮಾತ್ರ ಉಪಯೋಗಿಸಿ)
- 5. ಉತ್ತರದ ಪೂರ್ವಸಿದ್ದತೆಯ ಬರವಣಿಗೆಯನ್ನು (ಚಿತ್ತು ಕೆಲಸ) ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಒದಗಿಸಿದ ಖಾಲಿ ಜಾಗದಲ್ಲಿ ಮಾತ್ರವೇ ಮಾಡಬೇಕು (ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಮಾಡಬಾರದು).
- 6. ಒಂದು ನಿರ್ದಿಷ್ಟ ಪ್ರಶ್ನೆಗೆ ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ವೃತ್ತಾಕಾರವನ್ನು ಗುರುತಿಸಲಾಗಿದ್ದರೆ, ಅಂತಹ ಉತ್ತರವನ್ನು ತಪ್ಪು ಎಂದು ಪರಿಗಣಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಯಾವುದೇ ಅಂಕವನ್ನು ನೀಡಲಾಗುವುದಿಲ್ಲ. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಉದಾಹರಣೆ ನೋಡಿ.
- 7. ಅಭ್ಯರ್ಥಿ ಮತ್ತು ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರು ನಿರ್ದಿಷ್ಟಪಡಿಸಿದ ಸ್ಥಳದಲ್ಲಿ ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯ ಮೇಲೆ ಸಹಿ ಮಾಡಬೇಕು.
- 8. ಅಭ್ಯರ್ಥಿಯು ಪರೀಕ್ಷೆಯ ನಂತರ ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರಿಗೆ ಮೂಲ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆ ಮತ್ತು ವಿಶ್ವವಿದ್ಯಾನಿಲಯದ ಪ್ರತಿಯನ್ನು ಹಿಂದಿರುಗಿಸಬೇಕು.
- 9. ಅಭ್ಯರ್ಥಿಯು ಪ್ರಶ್ನೆ ಮಸ್ತಕವನ್ನು ಮತ್ತು ಓ.ಎಂ.ಆರ್. ಅಭ್ಯರ್ಥಿಯ ಪ್ರತಿಯನ್ನು ತಮ್ಮ ಜೊತೆ ತೆಗೆದುಕೊಂಡು ಹೋಗಬಹುದು.
- 10. ಕ್ಯಾಲ್ಕುಲೇಟರ್, ಪೇಜರ್ ಮತ್ತು ಮೊಬೈಲ್ ಘೋನ್ ಗಳನ್ನು ಪರೀಕ್ಷಾ ಕೊಠಡಿಯ ಒಳಗೆ ಅನುಮತಿಸಲಾಗುವುದಿಲ್ಲ.
- 11. ಅಭ್ಯರ್ಥಿಯು ದುಷ್ಕೃತ್ಯದಲ್ಲಿ ತೊಡೆಗಿರುವುದು ಕಂಡುಬಂದರೆ, ಅಂತಹ ಅಭ್ಯರ್ಥಿಯನ್ನು ಕೋರ್ಸ್ಗೆ ಪರಿಗಣಿಸಲಾಗುವುದಿಲ್ಲ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಅಂತಹ ಅಭ್ಯರ್ಥಿಯ ವಿರುದ್ಧ ಕ್ರಮ ಕೈಗೊಳ್ಳಲಾಗುವುದು.
- 12. ಈ ಪ್ರವೇಶ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಅರ್ಹರಾಗಲು ಒಟ್ಟು 50 ಅಂಕಗಳಲ್ಲಿ SC/ST/Cat-I ಅಭ್ಯರ್ಥಿಗಳು ಕನಿಷ್ಟ 8 ಅಂಕಗಳನ್ನು, OBC ಅಭ್ಯರ್ಥಿಗಳು ಕನಿಷ್ಟ 9 ಅಂಕಗಳನ್ನು ಮತ್ತು ಇನ್ನಿತರ ಅಭ್ಯರ್ಥಿಗಳು ಕನಿಷ್ಟ 10 ಅಂಕಗಳನ್ನು ಪಡೆಯತಕ್ಕದ್ದು.

ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯನ್ನು ತುಂಬಲು ಸೂಚನೆಗಳು

- 1. ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಗೆ ಒಂದೇ ಒಂದು ಅತ್ಯಂತ ಸೂಕ್ತವಾದ/ಸರಿಯಾದ ಉತ್ತರವಿರುತ್ತದೆ.
- 2. ಪ್ರತಿ ಪ್ರಶ್ನೆಗೆ ಒಂದು ವೃತ್ತವನ್ನು ಮಾತ್ರ ನೀಲಿ ಅಥವಾ ಕಪ್ಪು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ನೌಂದ ಮಾತ್ರ ತುಂಬತಕ್ಕದ್ದು. ಉತ್ತರವನ್ನು ಮಾರ್ಪಡಿಸಲು ಪ್ರಯತ್ನಿಸಬೇಡಿ.
- 3. ವೃತ್ತದೊಳೆಗಿರುವ ಅಕ್ಷರವು ಕಾಣದಿರುವಂತೆ ವೃತ್ತವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬುವುದು.
- 4. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿ ಯಾವುದೇ ಅನಾವಶ್ಯಕ ಗುರುತುಗಳನ್ನು ಮಾಡಬೇಡಿ.
- 5. ಉತ್ತರಿಸಿದ ಪ್ರಶ್ನೆಗಳ ಒಟ್ಟು ಸಂಖ್ಯೆಯನ್ನು O.M.R. ಹಾಳೆಯಲ್ಲಿ ನಿಗದಿಪಡಿಸಿರುವ ಜಾಗದಲ್ಲಿ ನಮೂದಿಸತಕ್ಕದ್ದು, ಇಲ್ಲವಾದಲ್ಲಿ O.M.R. ಹಾಳೆಯನ್ನು ಮೌಲ್ಯಮಾಪನಕ್ಕೆ ಪರಿಗಣಿಸುವುದಿಲ್ಲ.

Note: English version of the instructions is printed on the front cover of this booklet.