UNIVERSITY OF MYSORE

Postgraduate Entrance Examination November-2021

	QUESTION PAPER
	BOOKLET NO.
Entrance Reg. No.	3117
	SUBJECT CODE : 1

QUESTION BOOKLET

(Read carefully the instructions given in the Question Booklet)

COURSE : M.Sc. SUBJECT : Group - I

MAXIMUM MARKS: 100 MAXIMUM TIME: 135 MINUTES

(Including time for filling O.M.R. Answer sheet)

INSTRUCTIONS TO THE CANDIDATES

- 1. The sealed question paper booklet containing 100 questions enclosed with O.M.R. Answer Sheet is given to you.
- 2. Verify whether the given question booklet is of the same subject which you have opted for examination.
- Open the question paper seal carefully and take out the enclosed O.M.R. Answer Sheet outside the question booklet and fill up the general information in the O.M.R. Answer sheet. If you fail to fill up the details in the form as instructed, you will be personally responsible for consequences arising during evaluating your Answer Sheet.
- 4. During the examination:
 - a) Read each question carefully.
 - b) Determine the Most appropriate/correct answer from the four available choices given under each question.
 - c) Completely darken the relevant circle against the Question in the O.M.R. Answer Sheet. For example, in the question paper if "C" is correct answer for Question No.8, then darken against Sl. No.8 of O.M.R. Answer Sheet using Blue/Black Ball Point Pen as follows:

Question No. 8. (A) (B) (Only example) (Use Ball Pen only)

- 5. Rough work should be done only on the blank space provided in the Question Booklet. Rough work should not be done on the O.M.R. Answer Sheet.
- 6. <u>If more than one circle is darkened for a given question, such answer is treated as wrong and no mark will be given. See the example in the O.M.R. Sheet.</u>
- 7. The candidate and the Room Supervisor should sign in the O.M.R. Sheet at the specified place.
- 8. Candidate should return the original O.M.R. Answer Sheet and the university copy to the Room Supervisor after the examination.
- 9. Candidate can carry the question booklet and the candidate copy of the O.M.R. Sheet.
- 10. The calculator, pager and mobile phone are not allowed inside the examination hall.
- 11. If a candidate is found committing malpractice, such a candidate shall not be considered for admission to the course and action against such candidate will be taken as per rules.
- 12. Candidates have to get qualified in the respective entrance examination by securing a minimum of 16 marks in case of SC/ST/Cat-I Candidates, 18 marks in case of OBC Candidates and 20 marks in case of other Candidates out of 100 marks.

INSTRUCTIONS TO FILL UP THE O.M.R. SHEET

- 1. There is only one most appropriate/correct answer for each question.
- 2. For each question, only one circle must be darkened with BLUE or BLACK ball point pen only. Do not try to alter it.
- 3. Circle should be darkened completely so that the alphabet inside it is not visible.
- 4. Do not make any unnecessary marks on O.M.R. Sheet.
- 5. Mention the number of questions answered in the appropriate space provided in the O.M.R. sheet otherwise O.M.R. sheet will not be subjected for evaluation.

ಗಮನಿಸಿ : ಸೂಚನೆಗಳ ಕನ್ನಡ ಆವೃತ್ತಿಯು ಈ ಮಸ್ತಕದ ಹಿಂಭಾಗದಲ್ಲಿ ಮುದ್ರಿಸಲ್ಪಟ್ಟಿದೆ.

1.	Whi	ich one among these is considered a	as the	e most advanced inflorescence?
		Catkin		Corymb
	(C)	Spadix		Capitulum
2.	Acc	ording to Lewis concept, an acid ca	an	
	(A)	Accepts a pair of electrons	(B)	Accepts a hydroxyl group
	(C)	Gives out a proton	(D)	Donate a pair of electrons
3.	Whi	ich of these is a typical feature of a	proka	aryotic cell?
	(A)	Absence of DNA		
	(B)	Absence of nucleus		
	(C)	Absence of plasma membrane		
	(D)	Absence of cell wall.		
4.	L-ly	vsine is produced from		
	(A)	Corynebacterium glutamicum		
	(B)	Clostridium botulinum		
	(C)	Mycobacterium species		
	(D)	Pseudomonas		
5.	Son	and Soalu are host plants of		
	(A)	Eri silkworm	(B)	Topical Tasar silkworm
	(C)	Muga silkworm	(D)	Bombyx mori
6.		o gave the experimental support for ication?	the se	emi-conservative mode of DNA
	(A)	Messelson & Stahl		
	(B)	Watson & Crick		
	(C)	William & Franklin		
	(D)	Beadle & Tatum		

[2]

7.	In circulatory system of earth worm, the dorsal and ventral vessels are bridged by			al and ventral vessels are bridged	
	(A)	Pharyngeal vessels	(B)	Lateral arteries	
	(C)	Segmental veins	(D)	Lateral hearts	
8.	• Which one of these is the example for most stable ecosystem?				
	(A)	Mountain	(B)	Ocean	
	(C)	Forest	(D)	Desert	
9.	Which chromosome aberration leads to a dicentric bridge at anaphase meiosis?				
	(A)	Alternate disjunction	(B)	Terminal selection	
	(C)	Paracentric inversion	(D)	Pericentric inversion	
10.	The	vitamin present in coenzyme A is			
	(A)	Thiamine	(B)	Pantothenic acid	
	(C)	Riboflavin	(D)	Niacin	
11.	The	glucose ingested by the bacterial cel	ll is n	nade to retain within the cell by	
	(A)	Phosphorylation			
	(B)	Immediate breakdown			
	(C)	Attaching to plasma membrane			
	(D)	Carboxylation			
12.	Hun	nan Immunodeficiency Virus infects			
	(A)	B-lymphocytes	(B)	Red blood cells	
	(C)	Natural killer cells	(D)	CD4 ⁺ cells	
13.	Gly	colipids in the plasma membrane are	distr	ributed in the	
	(A)	Inner leaflet of the plasma membran	ne		
	(B)	Evenly in both inner and outer leafl	ets		
	(C)	Outer leaflet of the plasma membra	ne		
	(D) Varies according to the cell type				

	d and unopened Tasar cocoon is
(A) Katia	(B) Jhuri
(C) Ghicha	(D) Mejankhor
The ecosystem living in the	Alpine and polar ice is called
(A) Tundra	(B) Savanna
(C) Autotrophic	(D) Grassland
The color blindness is an ev	cample for which pattern of inheritance?
	tample for which pattern of finicitance:
` '	
` '	
(2) 11 111110 10000010	
Glucose exists in which form	m in Hawarth ring structure?
(A) Acetal form	
(B) Diacetal form	
(C) Hemiacetal form	
(D) Aldehyde form	
The sexual system of plant	classification was proposed by
	classification was proposed by
,	
` '	
(D) Engler and Prantl	
	ition of sperm at vitelline membrane is mediated
•	(B) Zona pellucida
` '	(D) Corticle granules
Which of these chromatog gravity?	graphy techniques is not under the influence of
	(D) 1:
(A) Gel permeation	(B) Ascending paper
•	(B) Ascending paper(D) Circular paper
	The ecosystem living in the (A) Tundra (C) Autotrophic The color blindness is an ex (A) X-linked dominant (B) Autosomal recessive (C) Autosomal dominant (D) X-linked recessive Glucose exists in which form (A) Acetal form (B) Diacetal form (C) Hemiacetal form (D) Aldehyde form The sexual system of plant (A) Bentham and Hooker (B) Carl Linnaeus (C) Theophrastus (D) Engler and Prantl The species specific recogniby (A) Bindin (C) Actin filaments

21.	Pasteurization is the process of heating the milk to kill microorganisms at						
	(A)	100°C	(B)	85°C			
	(C)	<80°C	(D)	98°C			
22.		Thich of the following is used as a vector for transferring genes to animal					
	cells						
		TMV	` ′	SV40 virus			
	(C)	CMV	(D)	Lambda Phage			
23.	Insu	lin is secreted by the					
	(A)	Beta cells of islets of Langerhans					
	(B)	Alpha cells of islets of Langerhans					
	(C)	Pancretic acinus					
	(D)	Kupfer cells					
24.	'Bul	lliform' cells are found in					
,		Nerium leaf	(B)	Soybean leaf			
	` ′	Maize leaf		Castor leaf			
25	If th	a E factor is integrated in to the gan	omo (of bootarie than the organism is			
23.	calle	e F factor is integrated in to the general	ome (or bacteria, then the organism is			
	(A)	F ⁺ strain	(B)	F' strain			
	(C)	F- strain	(D)	HFr strain			
26	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1				
20.		molar phosphoric acid solution is e	•				
	(A)	One normal solution	(B)	Three normal solution			
	(C)	Two normal solution	(D)	Four normal solution			
27.	Whi	ch of the following is a characteristi	c of a	allopatric speciation?			
	(A)	Geographic isolation					
	(B)	Asexually reproducing population					
	(C)	Large population					
	(D)	Isolation through adaptation of alle	les				

28.	G4 1	mulberry variety is suggested for		
	(A)	Chawki silkworms	(B)	Rainfed condition
	(C)	Late age silkworms	(D)	All instar silkworms
29.		ne end product of the pathway inhib	oits th	ne first enzyme of the pathway
	(A)	Feedback inhibition		
	(B)	Competitive inhibition		
		Uncompetitive inhibition		
		Suicide inhibition		
30.	Aer	obic respiration takes place in		
		Ribosomes	(B)	Endoplasmic reticulum
	(C)	Lysosomes	(D)	Mitochondria
31.	Upta	ake of DNA fragment from the envir	onme	ent by a bacterial cell is called
	(A)	Conjugation	(B)	Transduction
	(C)	Transformation	(D)	Transfection
32.	At s	ynaptic junction, synaptic vesicles a	.ccum	nulate at
	(A)	Pre-synaptic membrane		
	(B)	Axon membrane		
	(C)	Post synaptic membrane		
	(D)	Muscle cell membrane		
33.	In la	ac - operon model, the lactose binds	to	
	(A)	Operator	(B)	Polymerase
	(C)	Promoter	(D)	Repressor
34.	Lea	f spot disease in mulberry is caused	by	
	(A)	Phyllactina corylea	(B)	Pseudomonas mori
	(C)	Cercospora moricola	(D)	Cerotelium fici
35.	A m	onocot with reticulate venation is se	en in	
	(A)	Zea	(B)	Smilax
	(C)	Bambusa	(D)	Areca

[6]

36.	 The energy required by red blood cells is derived from (A) Pentose phosphate pathway (B) Beta oxidation of fatty acids (C) Mitochondrial electron transport chain (D) Glycolysis 				
37.	Glol	oal warming occurs in			
	(A)	Troposphere	(B)	Mesosphere	
	(C)	Stratosphere	(D)	Thermosphere	
38.	A pl	ant cell wall is mainly composed of			
	(A)	Cellulose	(B)	Protein	
	(C)	Peptidoglycan	(D)	Starch	
39.	The	weakest bond among the following	is		
	(A)	Phosphodiester bond	(B)	Covalent bond	
	(C)	Van der Waal's force	(D)	Co-ordinate bond	
40.	The	process of destroying living cells an	nd sp	ores is called	
	(A)	Filtration	(B)	Sterilization	
	(C)	Homogenization	(D)	Maceration	
41.	Which of these enzymes is responsible for fruit ripening?				
	(A)	Beta glucosidase	(B)	Hexokinase	
	(C)	Amylase	(D)	Polygalacturonase	
42.	Verr	nalization is the process of exposing	the s	seeds to	
	(A)	Low temperature	(B)	High temperature	
	(C)	Soaking in hot water	(D)	Boiling water	
43.	The	silk worm, Bombyx mori belongs to	o the	order	
	(A)	Diptera	(B)	Isoptera	
	(C)	Lepidoptera	(D)	Coleoptera	

	Tha	process of single gane controlling n	miltin	la traite is
		process of single gene controlling n Phenocopy	(B)	
	, ,	Incomplete dominance	` ′	Polygenic inheritance
	(0)	meomprete dominance	(D)	1 organic innertunice
45.	Indo	ole is a fused ring system, where		
		Two benzene rings are fused		
		Benzene is fused with pyrimidine		
	(C)	Benzene is fused with thiazole		
	(D)	Benzene is fused with pyrrole		
46.	DN	A synthesis takes place during		
	(A)	S phase	(B)	G1 phase
	(C)	G2 phase	(D)	G0 phase
47.	Asse	ociation between sucker fish and sha	ark is	an example of
	(A)	Mutualism	(B)	Parasitism
	(C)	Commensalism	(D)	Predation
48.	Prot	eins absorb light at		
		ems deserte ingili di		
		260nm	(B)	280nm
	(A)	-	(B) (D)	
	(A) (C)	260nm 660nm ch one of the following carries imp	(D)	Infrared
	(A) (C) Whi	260nm 660nm ch one of the following carries imp	(D)	Infrared
	(A) (C) Whi syste (A)	260nm 660nm ch one of the following carries impem?	(D) oure b	Infrared blood in mammalian circulatory Aorta
	(A) (C) Whit syste (A) (C)	260nm 660nm ch one of the following carries impem? Carotid artery	(D) oure b (B) (D)	Infrared blood in mammalian circulatory Aorta Pulmonary artery
49.	(A) (C) White system (A) (C) Reserved	260nm 660nm ch one of the following carries impem? Carotid artery Renal artery	(D) oure b (B) (D)	Infrared blood in mammalian circulatory Aorta Pulmonary artery
49.	(A) (C) White system (A) (C) Reserved (A)	260nm 660nm ch one of the following carries impem? Carotid artery Renal artery olving power of microscope is a fur	(D) oure b (B) (D)	Infrared blood in mammalian circulatory Aorta Pulmonary artery
49.	(A) (C) Whi syste (A) (C) Rese (A) (B)	260nm 660nm ch one of the following carries impem? Carotid artery Renal artery olving power of microscope is a fur Intensity of light	(D) oure b (B) (D)	Infrared blood in mammalian circulatory Aorta Pulmonary artery
49.	(A) (C) Whi syste (A) (C) Rese (A) (B) (C)	260nm 660nm ch one of the following carries impered? Carotid artery Renal artery olving power of microscope is a further intensity of light Focal length of condenser	(D) oure b (B) (D) nction	Infrared blood in mammalian circulatory Aorta Pulmonary artery of
49. 50.	(A) (C) Whit system (A) (C) (A) (B) (C) (D)	260nm 660nm ch one of the following carries impens? Carotid artery Renal artery olving power of microscope is a further intensity of light Focal length of condenser Refractive index	(D) oure b (B) (D) nction	Infrared blood in mammalian circulatory Aorta Pulmonary artery of
49. 50.	(A) (C) Whit system (A) (C) Reso (A) (B) (C) (D) The	260nm 660nm ch one of the following carries impem? Carotid artery Renal artery olving power of microscope is a fur Intensity of light Focal length of condenser Refractive index Wave length of light and numerical	(D) oure b (B) (D) nction	Infrared blood in mammalian circulatory Aorta Pulmonary artery of

[8]

52.	Who is regarded as 'Father of Green Revolution' in India?			
		M. S. Swaminathan		K. Ramaiah
	` ′	R. Vishwanathan	` /	K. N. Kaul
	(0)	2.1 · · · 2.5.2 · · · • • • • • • • • • • • • • • • •	(_)	
53.	The calle	maximum number of births under	idea	l conditions of environment is
	(A)	Realized natality	(B)	Ecological natality
		Potential natality	, ,	Crude density
	` ′	•	` ′	•
54.	A pi	bond is the result of		
	(A)	Overlap of two s orbitals		
	(B)	Overlap of s and p orbitals		
	(C)	Overlap of two p orbitals along the	ir axe	es
	(D)	Sidewise overlap of two parallel p	orbita	als
55.	Prot	ozoan which uses pseudopodia for	locor	notion belongs to
	(A)	Mastigophora	(B)	Rhizopoda
	(C)	Ciliata	(D)	Ctenophora
56.	The	organelle that does not contain DNA	A is	
		Lysosome	(B)	Chloroplast
	(C)	Mitochondria	(D)	Nucleus
	*****	1 C/1 DNIA /1 1'1	1, •	. 10
57.		ch of the DNA segment has high me	Iting	point?
		GC rich segment		
	(B)	AT rich segment	1	
	(C)	Segment with AT and GC in equal	numt	ber
	(D)	Segment with modified bases.		
58 3	Wilt 4	disease of cotton is caused by		
50.		Cercospora moricola	(B)	Phyllactonia corylea
		Fusarium oxysporum	(D)	Clostridium tetani
	(0)	i dodinini ozysporum	(D)	Closuldium tetam
59.	Whi	ch of the following shows totipoten	cy in	plants?
	(A)	Collenchyma cells	(B)	Meristem cells
	(C)	Xylem cells	(D)	Sieve tube cells

[9]

M-5411

(**P.T.O.**)

60.	Cho	ose the correct ratio which shows th	ne gei	ne intera	action
	(A)	1:2:1		(B)	1:1
	(C)	9:3:3:1		(D)	12:3:1
61.	The	internal respiratory system of insec	ts is 1	made up	of
	(A)	Malphigian tubules	(B)	Cemer	nt gland
	(C)	Choanocytes	(D)	Trache	eae
62.	The	carbanion make a bond with			
	(A)	Electropositive group			
		Electronegative group			
		Only with an electrically neutral gro	oup		
		With another carbanion	•		
63	Ano	xample for anaerobic culture mediu	ım ic		
05.		Wilson blair medium	1111 15		
	` ′	Mac Conkey broth			
		Robertson's cooked meat medium			
	` ′	EMB agar	-		
	(_)				
64.	The	cell theory is not applicable to			
	(A)	Fungi	(B)	Algae	
	(C)	Viruses	(D)	Bacter	ia
65.	Silk	wastes produced during reeling are	used	for pre	paring
		Raw silk		Spun s	
		Twisted silk		Tussal	
	` /		` /		
66.	Ecot	one is best described as the			
	(A)	Potentiality of an animal to adjust t	o nev	v circun	nstances
	(B)	Transition zone between two or mo	ore di	verse co	ommunities
	(C)	Maximum biomass an ecosystem of	can si	upport	
	(D)	State of equilibrium among various	s trop	hic leve	els in an ecosystem
67.	Wats	son-Crick double stranded DNA is a	an ex	ample f	or
-		A-DNA		Z-DNA	
	` /	C-DNA	` /	B-DN	

[10]

68.	An enzyme which joins the Okazaki fragments during DNA replication is				
	(A) DNA		(B)	DNA polymerase	
	(C) DNA	ligase	(D)	DNA synthase	
69.	Following	organells are involved in c	ytoplasn	nic inheritance	
	(A) Mitoo	chondria and Golgi comple	ex (B)	Chloroplast and lysosome	
	(C) Mitod	chondria and chloroplast	(D)	Microsomes and ribosomes	
70.	Heterospo	ry is seen in			
	(A) Selagi	nella	(B)	Psilotum	
	(C) Pteris		(D)	Marselia	
71.	The chrom	atographic technique base	ed on spe	ecific interactions is	
	(A) Affin	ity chromatography	(B)	Gel filtration chromatography	
	(C) Gas c	hromatography	(D)	Reverse phase HPLC.	
72.	The decrea	se in response to continuo	ous stimu	ılation is called	
	(A) Instin	ct	(B)	Maturation	
	(C) Impri	nting	(D)	Habituation	
73.	Hydrolytic	enzymes are present in			
	(A) Flagel	la	(B)	Lysosome	
	(C) Chlor	oplast	(D)	Microsome	
74.	During trai	nscription initiation, the R	NA poly	merase binds to	
	(A) Opera	ator	(B)	Enhancer	
	(C) Initiat	or	(D)	Promoter	
75.	Shell coilin	ng in Limnaea peregra (wa	ter snail)	is an example of	
	(A) Bipar	ental inheritance	(B)	Predetermination	
	(C) Mater	rnal effect	(D)	Dauer-modification	
76.		otic that inhibits protein sy	ynthesis	by binding to 23S rRNA of the	
	(A) Strept	tomycin	(B)	Chloramphenicol	
	(C) Penici		(D)	Tetracycline	
M -5	411	[1	[1]	(P.T.O.)	

[11]

77.	(A)	ch of these contain corrin ring syste Vitamin B12 Cytochromes	(B)	Hemoglobin Chlorophyll
78.		interaction between actin and myosin	n filaı	ments during muscle contraction
		splained by	(T)	
		Sliding filament model		Holliday model
	(C)	Action potential	(D)	Liquid Mosaic model
79.	'Pal	mae' is the earlier name for the plant	fami	lv
		Brassicaceae		Arecaceae
		Clusiaceae	` /	Poaceae
	(-)		(-)	
80.	The	percent of fibroin present in the silk	is	
	(A)	85-90%	(B)	65-75%
	(C)	60-70%	(D)	75-83%
Q1	Don	zana dage not under ao		
01.		zene does not under go		
	` ′	Addition reaction		
		Nucleophillic substitution reaction		
		Electrophillic substitution reaction Elimination reaction		
	(D)	Emmation reaction		
82.	Svn	abiotic association of mycorrhizal fu	ıngi i	n rhizosphere of plants helps in
	-	ke of	. 0	r
	-	Calcium ions	(B)	Potassium ions
		Phosphate ions	(D)	Iron ions
	` ′	•	` ′	
83.	Syn	thetic seeds are		
	(A)	Encapsulated flowers	(B)	Encapsulated stems
	(C)	Encapsulated roots	(D)	Encapsulated embryos
Q/I	Tho	mutation induced by profleyin is		
04.		mutation induced by proflavin is Transition	(B)	Transversion
	(C)	Inversions	(D)	Frameshift
85.	The	peculiar feature of Echinodermata is	s havi	ing
		Caudal spine		Tracheal system
	(C)	Water vascular system	(D)	Chordotonal organs

[12]

86.	How many perianth leaves are present in the mulberry flower?				
	(A)		(B)		
	(C)	8	(D)	2	
87.	The resolving power of unaided human eye is				
	(A)	100 micrometer	(B)	200 nanometer	
	(C)	1 centimeter	(D)	400 nanometer	
88.	The largest unit within which gene flow can readily occur is a				
	(A)	Genus	(B)	Hybrid	
	(C)	Population	(D)	Species	
89.		gas produced in a sludge tank is			
	(A)	Hydrogen	(B)	Nitrogen	
	(C)	Carbon dioxide	(D)	Oxygen	
90.	In SDS-PAGE, the proteins get separated based on their				
	(A)	Total charge	(B)	Molecular weight	
	(C)	Isoelectric point	(D)	Amino acid sequence	
91.	The genetically modified bacteria used for removal of oil pollution is				
	(A) Pseudomonas putida				
	(B)	Pseudomonas fluorescens			
	(C)	Bacillus subtilis			
	(D)	Bacillus thuringiensis			
92.	Plan	ts absorb nitrogen in the form of			
		Nitrous oxide			
	(B)	Nitrogen dioxide			
	(C)	Nitrates and ammonium ions			
	(D)	Nitric oxide			
93.	In a honey bee colony, the worker bees are				
	(A)	Sterile males	(B)	Diploid sterile females	
	` /	Haploid males	(D)	Females fed with royal jelly	
	(0)	Tapiola maios		1 chiares real with royal joing	

The membrane around the vacuole is known as					
(A)	Elaioplast	(B)	Cytoplast		
(C)	Amyloplast	(D)	Tonoplast		
What percent of RNA in a bacterial cell is mRNA?					
(A)	10-15%	(B)	35-40%		
(C)	< 5%	(D)	50-60%		
Heterocysts are seen in					
(A)	Nostoc	(B)	Chlamydomonas		
(C)	Cladophora	(D)	Spirogyra		
Artificial hatching of diapaused silk moth eggs is achieved by					
(A)	Aestivation	(B)	HCl treatment		
(C)	Formalin treatment	(D)	NaOH treatment		
In excision repair mechanism, nicking of DNA followed by adherence of a helicase called as					
(A)	Uvr A	(B)	Uvr C		
(C)	Uvr D	(D)	Uvr B		
Concentrated sulphuric acid is diluted by					
(A)	(A) Slowly adding sulphuric acid to water				
(B) Slowly adding water to sulphuric acid					
(C) Adding water while stirring sulphuric acid					
(D)	Adding ice cold water to s	sulphuric acid			
. Foll	owing are the branched po	lysaccharides,	except		
(A)	Glycogen	(B)	Starch		
(C)	Peptidoglycan	(D)	Amylose		
	ž	* * *			
	(A) (C) What (A) (C) Heta (A) (C) Arti (A) (C) In e helia (A) (C) Con (A) (B) (C) (D) Foll (A)	 (A) Elaioplast (C) Amyloplast What percent of RNA in a bact. (A) 10-15% (C) < 5% Heterocysts are seen in (A) Nostoc (C) Cladophora Artificial hatching of diapaused. (A) Aestivation (C) Formalin treatment In excision repair mechanism, helicase called as (A) Uvr A (C) Uvr D Concentrated sulphuric acid is (A) Slowly adding sulphuric at (B) Slowly adding water to su (C) Adding water while stirring. (D) Adding ice cold water to so Following are the branched post (A) Glycogen (C) Peptidoglycan 	(A) Elaioplast (D) What percent of RNA in a bacterial cell is mark (A) 10-15% (B) (C) < 5% (D) Heterocysts are seen in (A) Nostoc (B) (C) Cladophora (D) Artificial hatching of diapaused silk moth egg (A) Aestivation (B) (C) Formalin treatment (D) In excision repair mechanism, nicking of Diapause called as (A) Uvr A (B) (C) Uvr D (D) Concentrated sulphuric acid is diluted by (A) Slowly adding sulphuric acid to water (B) Slowly adding water to sulphuric acid (C) Adding water while stirring sulphuric acid (D) Adding ice cold water to sulphuric acid (E) Following are the branched polysaccharides, (A) Glycogen (B)		

M-5411 [14]

Rough Work

M-5411 [15]

ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಸೂಚನೆಗಳು

- 1. ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಜೊತೆಗೆ 100 ಪ್ರಶ್ನೆಗಳನ್ನು ಹೊಂದಿರುವ ಮೊಹರು ಮಾಡಿದ ಪ್ರಶ್ನೆ ಪುಸ್ತಕವನ್ನು ನಿಮಗೆ ನೀಡಲಾಗಿದೆ.
- 2. ಕೊಟ್ಟಿರುವ ಪ್ರಶ್ನೆ ಮಸ್ತಕವು, ನೀವು ಪರೀಕ್ಷೆಗೆ ಆಯ್ಕೆ ಮಾಡಿಕೊಂಡಿರುವ ವಿಷಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ್ದೇ ಎಂಬುದನ್ನು ಪರಿಶೀಲಿಸಿರಿ.
- 3. ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯ ಮೊಹರನ್ನು ಜಾಗ್ರತೆಯಿಂದ ತೆರೆಯಿರಿ ಮತ್ತು ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯಿಂದ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯನ್ನು ಹೊರಗೆ ತೆಗೆದು, ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಸಾಮಾನ್ಯ ಮಾಹಿತಿಯನ್ನು ತುಂಬಿರಿ. ಕೊಟ್ಟಿರುವ ಸೂಚನೆಯಂತೆ ನೀವು ನಮೂನೆಯಲ್ಲಿನ ವಿವರಗಳನ್ನು ತುಂಬಲು ವಿಫಲರಾದರೆ, ನಿಮ್ಮ ಉತ್ತರ ಹಾಳೆಯ ಮೌಲ್ಯಮಾಪನ ಸಮಯದಲ್ಲಿ ಉಂಟಾಗುವ ಪರಿಣಾಮಗಳಿಗೆ ವೈಯಕ್ತಿಕವಾಗಿ ನೀವೇ ಜವಾಬ್ದಾರರಾಗಿರುತ್ತೀರಿ.
- 4. ಪರೀಕ್ಷೆಯ ಸಮಯದಲ್ಲಿ:
 - a) ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಯನ್ನು ಜಾಗ್ರತೆಯಿಂದ ಓದಿರಿ.
 - b) ಪ್ರತಿ ಪ್ರಶ್ನೆಯ ಕೆಳಗೆ ನೀಡಿರುವ ನಾಲ್ಕು ಲಭ್ಯ ಆಯ್ಕೆಗಳಲ್ಲಿ ಅತ್ಯಂತ ಸರಿಯಾದ/ ಸೂಕ್ತವಾದ ಉತ್ತರವನ್ನು ನಿರ್ಧರಿಸಿ.
 - c) ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೆಯ ವೃತ್ತಾಕಾರವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬಿರಿ. ಉದಾಹರಣೆಗೆ, ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8ಕ್ಕೆ "C" ಸರಿಯಾದ ಉತ್ತರವಾಗಿದ್ದರೆ, ನೀಲಿ/ಕಪ್ಪು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಬಳಸಿ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಕ್ರಮ ಸಂಖ್ಯೆ 8ರ ಮುಂದೆ ಈ ಕೆಳಗಿನಂತೆ ತುಂಬಿರಿ:
 - ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8. 🔘 📵 🔘 (ಉದಾಹರಣೆ ಮಾತ್ರ) (ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಮಾತ್ರ ಉಪಯೋಗಿಸಿ)
- 5. ಉತ್ತರದ ಪೂರ್ವಸಿದ್ದತೆಯ ಬರವಣಿಗೆಯನ್ನು (ಚಿತ್ತು ಕೆಲಸ) ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಒದಗಿಸಿದ ಖಾಲಿ ಜಾಗದಲ್ಲಿ ಮಾತ್ರವೇ ಮಾಡಬೇಕು (ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಮಾಡಬಾರದು).
- 6. ಒಂದು ನಿರ್ದಿಷ್ಟ ಪ್ರಶ್ನೆಗೆ ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ವೃತ್ತಾಕಾರವನ್ನು ಗುರುತಿಸಲಾಗಿದ್ದರೆ, ಅಂತಹ ಉತ್ತರವನ್ನು ತಪ್ಪು ಎಂದು ಪರಿಗಣಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಯಾವುದೇ ಅಂಕವನ್ನು ನೀಡಲಾಗುವುದಿಲ್ಲ. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಉದಾಹರಣೆ ನೋಡಿ.
- 7. ಅಭ್ಯರ್ಥಿ ಮತ್ತು ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರು ನಿರ್ದಿಷ್ಟಪಡಿಸಿದ ಸ್ಥಳದಲ್ಲಿ ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯ ಮೇಲೆ ಸಹಿ ಮಾಡಬೇಕು.
- 8. ಅಭ್ಯರ್ಥಿಯು ಪರೀಕ್ಷೆಯ ನಂತರ ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರಿಗೆ ಮೂಲ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆ ಮತ್ತು ವಿಶ್ವವಿದ್ಯಾನಿಲಯದ ಪ್ರತಿಯನ್ನು ಹಿಂದಿರುಗಿಸಬೇಕು.
- 9. ಅಭ್ಯರ್ಥಿಯು ಪ್ರಶ್ನೆ ಮಸ್ತಕವನ್ನು ಮತ್ತು ಓ.ಎಂ.ಆರ್. ಅಭ್ಯರ್ಥಿಯ ಪ್ರತಿಯನ್ನು ತಮ್ಮ ಜೊತೆ ತೆಗೆದುಕೊಂಡು ಹೋಗಬಹುದು.
- 10. ಕ್ಯಾಲ್ಕುಲೇಟರ್, ಪೇಜರ್ ಮತ್ತು ಮೊಬೈಲ್ ಘೋನ್ ಗಳನ್ನು ಪರೀಕ್ಷಾ ಕೊಠಡಿಯ ಒಳಗೆ ಅನುಮತಿಸಲಾಗುವುದಿಲ್ಲ.
- 11. ಅಭ್ಯರ್ಥಿಯು ದುಷ್ಕೃತ್ಯದಲ್ಲಿ ತೊಡಗಿರುವುದು ಕಂಡುಬಂದರೆ, ಅಂತಹ ಅಭ್ಯರ್ಥಿಯನ್ನು ಕೋರ್ಸ್ಗೆ ಪರಿಗಣಿಸಲಾಗುವುದಿಲ್ಲ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಅಂತಹ ಅಭ್ಯರ್ಥಿಯ ವಿರುದ್ಧ ಕ್ರಮ ಕೈಗೊಳ್ಳಲಾಗುವುದು.
- 12. ಈ ಪ್ರವೇಶ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಅರ್ಹರಾಗಲು ಒಟ್ಟು 100 ಅಂಕಗಳಲ್ಲಿ SC/ST/Cat-I ಅಭ್ಯರ್ಥಿಗಳು ಕನಿಷ್ಟ 16 ಅಂಕಗಳನ್ನು, OBC ಅಭ್ಯರ್ಥಿಗಳು ಕನಿಷ್ಟ 18 ಅಂಕಗಳನ್ನು ಮತ್ತು ಇನ್ನಿತರ ಅಭ್ಯರ್ಥಿಗಳು ಕನಿಷ್ಟ 20 ಅಂಕಗಳನ್ನು ಪಡೆಯತಕ್ಕದ್ದು.

ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯನ್ನು ತುಂಬಲು ಸೂಚನೆಗಳು

- 1. ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಗೆ ಒಂದೇ ಒಂದು ಅತ್ಯಂತ ಸೂಕ್ತವಾದ/ಸರಿಯಾದ ಉತ್ತರವಿರುತ್ತದೆ.
- 2. ಪ್ರತಿ ಪ್ರಶ್ನೆಗೆ ಒಂದು ವೃತ್ತವನ್ನು ಮಾತ್ರ ನೀಲಿ ಅಥವಾ ಕಪ್ಪು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ನೌಂದ ಮಾತ್ರ ತುಂಬತಕ್ಕದ್ದು. ಉತ್ತರವನ್ನು ಮಾರ್ಪಡಿಸಲು ಪ್ರಯತ್ನಿಸಬೇಡಿ.
- 3. ವೃತ್ತದೊಳಗಿರುವ ಅಕ್ಷರವು ಕಾಣದಿರುವಂತೆ ವೃತ್ತವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬುವುದು.
- 4. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿ ಯಾವುದೇ ಅನಾವಶ್ಯಕ ಗುರುತುಗಳನ್ನು ಮಾಡಬೇಡಿ.
- 5. ಉತ್ತರಿಸಿದ ಪ್ರಶ್ನೆಗಳ ಒಟ್ಟು ಸಂಖ್ಯೆಯನ್ನು O.M.R. ಹಾಳೆಯಲ್ಲಿ ನಿಗದಿಪಡಿಸಿರುವ ಜಾಗದಲ್ಲಿ ನಮೂದಿಸತಕ್ಕದ್ದು, ಇಲ್ಲವಾದಲ್ಲಿ O.M.R. ಹಾಳೆಯನ್ನು ಮೌಲ್ಯಮಾಪನಕ್ಕೆ ಪರಿಗಣಿಸುವುದಿಲ್ಲ.

Note: English version of the instructions is printed on the front cover of this booklet.